Preloader

Tag: Health PhD

CMCRC HEALTH PHD PRESENTS AT HEALTH FORUM

Well done to Health PhD Amir Marashi who presented his work at the ’45 and Up Study Annual Forum 2017’. Mr Marashi spoke on the association between physical activity and incidence of chronic health conditions in the Australian population aged 45 years and over which was well received. Recently, Amir also appeared with two of

Read More

HEALTH TEAM’S MEDICATION MANAGEMENT WORKSHOP A SUCCESS

Professor Libby Roughead from University of South Australia shared some of her valuable experiences and topical insights into the issue of medication management at CMCRC recently with selected industry partners and researchers. Professor Roughead is the lead academic on medication management in the proposed Digital Health CRC. The result of the first round bid for

Read More

JOINT PREDICTION OF ONSET CHRONIC CONDITIONS

Chronic conditions can be costly but also preventable as well as predictable. We develop a model to predict in the short term (2-3 years) the onset of one or more chronic conditions. Five chronic conditions are considered: heart disease, stroke, diabetes, hypertension and cancer. Predictions are made on the basis of standard demographic/socio-economic variables, risk

Read More

PREDICTING CHRONIC DISEASES FROM HEALTHCARE DATA-A FRAMEWORK BASED ON GRAPH THEORY AND SOCIAL NETWORK MEASURES

The study illustrates a framework to predict the progression of chronic diseases from a new perspective using graph theory and social network analysis methods. The framework utilizes large and untapped longitudinal administrative data sets that contain ICD-10-AM disease codes that describe the principal and secondary diagnosis recorded during hospital admissions. The primary focus of the

Read More

ADAPTING GRAPH THEORY AND SOCIAL NETWORK MEASURES ON HEALTHCARE DATA – A NEW FRAMEWORK TO UNDERSTAND CHRONIC DISEASE PROGRESSION

The paper presents an approach that applies social network theory to understand chronic disease progression. Submitted to the Australasian Workshop on Health Informatics and Knowledge Management  https://cs.anu.edu.au/conf/acsw2016/sub-confs/hikm.html Author(s): Arif Khan, Shahadat Uddin and Uma Srinivasan

Read More

LEVERAGING BIG DATA ANALYTICS TO REDUCE HEALTHCARE COSTS

The healthcare sector deals with large volumes of electronic data related to patient services. This article describes two novel applications that leverage big data to detect fraud, abuse, waste, and errors in health insurance claims, thus reducing recurrent losses and facilitating enhanced patient care. The results indicate that claim anomalies detected using these applications help

Read More

ANOMALIES DETECTION IN HEALTHCARE SERVICES

Srinivasan, U. “Anomalies Detection in Healthcare Services” Using several practical examples of cost and quality-of-care outliers, the author presents a framework to detect outliers and anomalies in healthcare services. Author(s): Srinivasan, U. View Paper

Read More

LEVERAGING BIG DATA ANALYTICS TO REDUCE HEALTHCARE COSTS

The healthcare sector deals with large volumes of electronic data related to patient services. This article describes two novel applications that leverage big data to detect fraud, abuse, waste, and errors in health insurance claims, thus reducing recurrent losses and facilitating enhanced patient care. The results indicate that claim anomalies detected using these applications help

Read More

APPLICATION OF NETWORK ANALYSIS ON HEALTHCARE

Fei Wang, Uma Srinivasan, Shahadat Uddin, and Sanjay Chawla. “Application of network analysis on healthcare”. In Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on IEEE, 2014. The healthcare sector holds large amounts of semantically rich electronic data generated and used by different sections of the health care community. Data analytic

Read More

TIKHONOV OR LASSO REGULARIZATION: WHICH IS BETTER AND WHEN. IN TOOLS WITH ARTIFICIAL INTELLIGENCE

Fei Wang, Sanjay Chawla, and Wei Liu. “Tikhonov or lasso regularization: Which is better and when. In Tools with Artificial Intelligence” (ICTAI), 2013 IEEE 25th International Conference on, pages 795–802. IEEE, 2013. It is well known that supervised learning problems with ℓ1 (Lasso) and ℓ2 (Tikhonov or Ridge) regularizers will result in very different solutions. For example,

Read More