Preloader

Tag: Arif Khan

ADAPTING GRAPH THEORY AND SOCIAL NETWORK MEASURES ON HEALTHCARE DATA – A NEW FRAMEWORK TO UNDERSTAND CHRONIC DISEASE PROGRESSION

The paper presents an approach that applies social network theory to understand chronic disease progression. Submitted to the Australasian Workshop on Health Informatics and Knowledge Management  https://cs.anu.edu.au/conf/acsw2016/sub-confs/hikm.html Author(s): Arif Khan, Shahadat Uddin and Uma Srinivasan

Read More

PREDICTING CHRONIC DISEASES FROM HEALTHCARE DATA-A FRAMEWORK BASED ON GRAPH THEORY AND SOCIAL NETWORK MEASURES

The study illustrates a framework to predict the progression of chronic diseases from a new perspective using graph theory and social network analysis methods. The framework utilizes large and untapped longitudinal administrative data sets that contain ICD-10-AM disease codes that describe the principal and secondary diagnosis recorded during hospital admissions. The primary focus of the

Read More