Preloader

Tag: health market quality

ADAPTING GRAPH THEORY AND SOCIAL NETWORK MEASURES ON HEALTHCARE DATA – A NEW FRAMEWORK TO UNDERSTAND CHRONIC DISEASE PROGRESSION

The paper presents an approach that applies social network theory to understand chronic disease progression. Submitted to the Australasian Workshop on Health Informatics and Knowledge Management  https://cs.anu.edu.au/conf/acsw2016/sub-confs/hikm.html Author(s): Arif Khan, Shahadat Uddin and Uma Srinivasan

Read More

LEVERAGING BIG DATA ANALYTICS TO REDUCE HEALTHCARE COSTS

The healthcare sector deals with large volumes of electronic data related to patient services. This article describes two novel applications that leverage big data to detect fraud, abuse, waste, and errors in health insurance claims, thus reducing recurrent losses and facilitating enhanced patient care. The results indicate that claim anomalies detected using these applications help

Read More

ANOMALIES DETECTION IN HEALTHCARE SERVICES

Srinivasan, U. “Anomalies Detection in Healthcare Services” Using several practical examples of cost and quality-of-care outliers, the author presents a framework to detect outliers and anomalies in healthcare services. Author(s): Srinivasan, U. View Paper

Read More

LEVERAGING BIG DATA ANALYTICS TO REDUCE HEALTHCARE COSTS

The healthcare sector deals with large volumes of electronic data related to patient services. This article describes two novel applications that leverage big data to detect fraud, abuse, waste, and errors in health insurance claims, thus reducing recurrent losses and facilitating enhanced patient care. The results indicate that claim anomalies detected using these applications help

Read More

APPLICATION OF NETWORK ANALYSIS ON HEALTHCARE

Fei Wang, Uma Srinivasan, Shahadat Uddin, and Sanjay Chawla. “Application of network analysis on healthcare”. In Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on IEEE, 2014. The healthcare sector holds large amounts of semantically rich electronic data generated and used by different sections of the health care community. Data analytic

Read More

TIKHONOV OR LASSO REGULARIZATION: WHICH IS BETTER AND WHEN. IN TOOLS WITH ARTIFICIAL INTELLIGENCE

Fei Wang, Sanjay Chawla, and Wei Liu. “Tikhonov or lasso regularization: Which is better and when. In Tools with Artificial Intelligence” (ICTAI), 2013 IEEE 25th International Conference on, pages 795–802. IEEE, 2013. It is well known that supervised learning problems with ℓ1 (Lasso) and ℓ2 (Tikhonov or Ridge) regularizers will result in very different solutions. For example,

Read More

MULTI-FUND DATA ANALYTICS TARGETS ENHANCED VALUE-FOR-MONEY IN HEALTHCARE SERVICES

Governments as well as health and accident compensation insurers are grappling to improve health outcomes while keeping spiraling costs under control. These seemingly irreconcilable goals require a careful balance of policy to help stem the tide of ever increasing costs in the health industry. Dr Uma Srinivasan CMC Insurance Solutions CMC Lead Scientist   Keywords: Health insurance,

Read More

SOCIAL NETWORK RESEARCH IN HEALTH COULD OPEN THE DOOR FOR SIGNIFICANT SAVINGS

The health industry consumes vast amounts of money and resources and is seen as a “black-hole” in many Government budgets. A ground breaking study using new science could save the industry millions and point the way for future research. Dr Shahadat Uddin CMCRC PhD Graduate Lecturer, U. Sydney Shahadat Uddin is a graduate of the

Read More

JOINT APPOSITION EXTRACTION WITH SYNTACTIC AND SEMANTIC CONSTRAINTS

A study by CMCRC researchers presents a fresh look at extracting apposition from large collections of news, web and broadcast text in order to turn unstructured news stories into “computable data”. News is about interactions between entities ‐ people, places and organisations ‐ and understanding stories requires interpreting the entities in them and their attributes.

Read More

UNDERSTANDING CHRONIC DISEASE COMORBIDITIES FROM BASELINE NETWORKS – KNOWLEDGE DISCOVERY UTILISING ADMINISTRATIVE HEALTHCARE DATA

Hospitals routinely collect admitted patients’ data for administrative purposes and for reporting to the government and health insurers. These heterogeneous and mostly untapped data contain rich semantic information about patients’ health conditions in the form of standard disease codes. These traces of clinical information can be aggregated over patients to understand how their health progresses

Read More